Aluminium alloys (or aluminum alloys; seespelling differences) are alloys in which aluminium(Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese,silicon, tin and zinc. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils andextrusions. Cast aluminium alloys yield cost-effective products due to the low melting point, although they generally have lower tensile strengthsthan wrought alloys. The most important cast aluminium alloy system is Al–Si, where the high levels of silicon (4.0–13%) contribute to give good casting characteristics. Aluminium alloys are widely used in engineering structures and components where light weight or corrosion resistance is required.
Alloys composed mostly of aluminium have been very important in aerospace manufacturingsince the introduction of metal-skinned aircraft. Aluminium-magnesium alloys are both lighter than other aluminium alloys and much less flammable than alloys that contain a very high percentage of magnesium.
Aluminium alloy surfaces will develop a white, protective layer of aluminium oxide if left unprotected by anodizing and/or correct painting procedures. In a wet environment, galvanic corrosion can occur when an aluminium alloy is placed in electrical contact with other metals with more negative corrosion potentials than aluminium, and an electrolyte is present that allows ion exchange. Referred to as dissimilar-metal corrosion, this process can occur as exfoliation or as intergranular corrosion. Aluminium alloys can be improperly heat treated. This causes internal element separation, and the metal then corrodes from the inside out. Aircraft mechanics deal daily with aluminium alloy corrosion.
Aluminium alloy compositions are registered with The Aluminum Association. Many organizations publish more specific standards for the manufacture of aluminium alloy, including the Society of Automotive Engineers standards organization, specifically its aerospace standards subgroups, and ASTM International.
Provide all grade of these alloy by different shape & size is Our expertise
For any inquiry & request, don't hesitate to contact us
Alloy Designation |
UK |
US |
US Federal |
European |
Other |
1050A |
BS 1B 1050A Sheet, plate |
|
|
WS 3.0255 |
A5 - 1050A |
1080A |
BS 1A Alloy 1080A |
|
|
WS 3.0285 |
A8 - 1080A |
1100 |
|
AMS 4001 1100-0 Sheet and Plate |
QQ-A-225/1 1100-TF Bar |
|
|
1200 |
BS 6 L16 1200-H14 or H24 sheet |
|
|
WS 3.0205 |
A4 - 1200 |
1350 |
BS 1E |
|
|
WS 3.0257 |
A5/L |
Provide all grade of these alloy by different shape & size is Our expertise
For any inquiry & request, don't hesitate to contact us
Aluminium Alloy 2000
Alloy Designation |
UK |
US |
US Federal |
European |
Other |
2011 |
BS FC1 2011 Bar & Rod |
|
QQ-A-225/3 2011 Bar, cold drawn |
WS 3.1655 |
AlCu(Bi/Mg)Pb |
2014A |
BS 7 L37 2014A Rivet stock |
AMS 4028 2014-T0 Sheet /Plate |
QQ-A-200/2 2014-T4 Extruded bar |
WS 3.1255 |
A-U4SG |
2017A |
|
AMS 4110 2017-451 (see AMS 4118) |
QQ-A-225/5 Alloy 2017a |
|
|
2024 |
BS 2 L97 2024-T351 Plate |
AMS 4033 2024-T351 |
QQ-A-200/3 2024-T4 Extruded bar |
WS 3.1354 Bare sheet |
Airbus ABM1-1005 |
2031 |
BS 2 L83 2031 Rivet stock |
|
|
|
A-U2N |
2219 |
|
AMS 4031 2219-T0 Sheet, plate |
QQ-A-250/30 2219-0 |
|
|
2618A |
BS H16 |
AMS 4132 2618-T61 Die & Hand forgings |
|
|
A-U2GN |
Provide all grade of these alloy by different shape & size is Our expertise
For any inquiry & request, don't hesitate to contact us
Aluminium Alloy 3000
Alloy Designation |
UK |
US |
US Federal |
European |
Other |
3003 |
|
AMS 4006 3003-T0 Sheet, plate |
QQ-A-225/2 3003 Cold finished bar |
|
|
3103 |
BS N3 |
|
|
WS 3.0515 |
|
3105 |
BS N31 |
|
|
WS 3.0505 |
|
Alloy Designation |
UK |
US |
US Federal |
European |
Other |
4043 |
BS N21 Tig and Mig Wire |
AMS 4190 Welding wire (AWS 5.10) |
|
|
AlSi5(A) |
4047 |
BS N2 Brazing sheet and wire |
AMS 4185 Welding wire (AWS 5.10) |
QQ-B-655 Class FS-BA1 Si4 |
|
AlSi12(A) |
Alloy Designation |
UK |
US |
US Federal |
European |
Other |
5005 |
BS N41 5005 |
|
|
|
A-G0.6 - 5005 |
5052 |
|
AMS 4004 5052 Strain Hardened Foil |
QQ-A-225/7 5052 Cold finished bar |
|
|
5056 |
BS 3 L58 Alloy 5056 A Rivet Stock |
AMS 4182 5056-0 Wire |
QQ-A-430 5056-0 Rivet wire |
WS 3.3555 |
A-G5M |
5083 |
BS N8 Alloy 5083 Sheet and Plate |
AMS 4056 5083-0 Sheet and Plate |
QQ-A-200/4 5083 Extruded bar, tube |
WS 3.3547 |
AlMg4.5Mn |
5154 A |
BS N5 Alloy 5154A |
|
|
|
|
5251 |
BS 5L44 Alloy 5251 Forging Stock and Forgings |
|
|
WS 3.3525 |
A-G2M |
5454 |
BS N51 Alloy 5454 |
|
QQ-A-250/10 5454 Sheet and Plate |
WS 3.3537 |
A-G2.5MC |
5554 |
BS N52 Alloy 5554 |
|
|
|
|
5556A |
BS N61 Alloy 5556A Wire MIG and TIG |
|
|
|
|
Provide all grade of these alloy by different shape & size is Our expertise
For any inquiry & request, don't hesitate to contact us
Aluminium Alloy 6000
Alloy Designation |
UK |
US |
US Federal |
European |
Other |
6053 |
6053- Wire |
|
|
|
|
6056 |
6056-Wire |
|
|
|
|
6061 |
BS L117 Alloy 6061 Tube Drawn T6 |
AMS 4009 6061-0 Foil |
QQ-A-200/8 6061-T6/T6511 Extruded bar, tube, section |
WS 3.3211 |
AWCO-22 |
6063 |
BS H9 Alloy 6063 |
AMS 4156 6063-T6 Extrusions |
QQ-A-200/9 6063 |
|
|
6082 |
BS L111 Alloy 6082-T6 Bars and Sections |
|
|
WS 3.2315 |
Alcoa-920 |
6101 A |
BS 91E Alloy 6101 A |
|
|
|
|
6262 |
|
|
QQ-A-225/10 6262 Wire, Rod and Bar |
|
|
6463 |
BS E6 Alloy 6463 |
|
|
|
|
Provide all grade of these alloy by different shape & size is Our expertise
For any inquiry & request, don't hesitate to contact us
Aluminium Alloy 7000
Alloy Designation |
UK |
US |
US Federal |
European |
Other |
7017 |
|
|
|
|
|
7020 |
BS H17 Alloy 7020 |
|
|
WS 3.4335 |
Alcan GB-D74S |
7050 |
|
AMS 4050 7050-T7451 plate |
|
W.S. 3.4144 |
ABS 5239 |
7075 |
BS 2 L95 Alloy 7075-T651 Plate |
AMS 4038 7075-T651 Superseded by AMS 4045 |
QQ-A-250/13 7075-0 Alclad sheet and plate |
EN 2127 |
AIR 9048.690 7075-T7351 Plate |
7175 |
|
AMS 4109 7175-T736 Superseded by AMS 4149 |
|
WS 3.4364 |
ABS 5064 |
Alloy Designation |
UK |
US |
US Federal |
European |
Other |
1145 |
|
AMS 4011 1145-0 Foil and Light Gauge Sheet |
|
|
|
1199 |
BS 1 Alloy 1199 |
|
|
French A9 |
|
2004 |
|
AMS 4208 2004-F Sheet |
|
|
|
2018 |
|
AMS 4140 2018-T61 Die Forgings |
|
QQ-A-367 |
|
2025 |
|
AMS 4130 2025-T6 Die Forgings |
|
QQ-A-367 |
|
2090 |
|
AMS 4232 2090-T86 Extrusion |
|
|
|
2117 |
L86 2117 Rivet Stock |
AMS 7222 |
|
WS 3.1305 |
A-U2G - 2117 |
2124 |
|
AMS 4101 2124-T851 Plate |
|
QQ-A-250/29 T851 |
|
2319 |
|
AMS 4191 2319 Welding Wire |
|
|
AWS 5.10 ER 2319 |
4032 |
|
AMS 4145 4032-T6 Forging |
QQ-A-367 |
|
AlSi10Mg |
4008 |
|
AMS 4181 4008 Welding wire - |
|
|
|
4145 |
|
AMS 4184 4145 Brazing filler |
QQ-B-655 Class FS-BA1 Si3 |
|
|
4643 |
|
AMS 4189 4643 Welding wire |
|
|
|
4032 |
|
AMS 4318 4032-T86 Bar, cold finished |
|
|
|
5004 |
DTD 5004 Forging Stock and Forgings |
|
|
|
|
5086 |
|
|
QQ-A-250/7 5086 sheet and plate |
|
|
5456 |
|
|
QQ-A-250/9 5456 Sheet and Plate |
|
|
5754 |
|
|
|
|
A-G3M |
6013 |
|
AMS 4216 6013-T6 Sheet |
|
|
|
6056A |
BS B6 Alloy 6056A |
|
|
|
|
6060 |
|
|
|
WS 3.3535 |
AlMgSi0.5 |
6062 |
|
AMS 4150 6062-T6 Extrusions |
|
|
|
6066 |
BS 2 L84 Alloy 6066-T4 Bars, Sections |
|
|
|
|
6151 |
|
AMS 4125 6151-T6 Die Forgings, Forged Rings |
QQ-A-367 |
|
|
7014 |
BS L171 Alloy 7014 Forgings |
|
|
|
|
7010 |
|
AMS 4203 7010-T7351 Plate |
|
|
|
7049 |
|
AMS 4111 7049-T73 Forgings |
QQ-A-367 Alloy 7049 T73 |
|
|
7079 |
|
AMS 4138 7079-T6 Forgings non-current |
|
|
|
7149 |
|
AMS 4343 7149-T73511 Extrusion |
|
|
|
7150 |
|
AMS 4252 7150-T7751 Plate |
|
|
|
7178 |
|
AMS 4051 7178-0 Alclad Sheet and Plate |
QQ-A-250/15 T0 |
|
|
7475 |
|
AMS 4084 7475-T61 Sheet |
|
|
|
8009 |
|
AMS 4308 8009-H112 Sheet |
|
|
|
8011 |
|
|
|
|
A-FeS |
8090 |
|
AMS 4259 8090-T6 Sheet |
|
|
|
Miscellaneous |
4 L35 Ingots and Casting (Obs) |
|
|
|
|
Provide all grade of these alloy by different shape & size is Our expertise
For any inquiry & request, don't hesitate to contact us
Contents
· 1 Engineering use and aluminium alloys properties
o 1.1 Overview
o 1.2 Aluminium alloys versus types of steel
o 1.3 Heat sensitivity considerations
o 1.4 Household wiring
· 2 Alloy designations
o 2.1 Temper designation
o 2.2 Wrought alloys
o 2.3 Cast alloys
o 2.4 Named alloys
· 3 Applications
o 3.1 Aerospace alloys
§ 3.1.1 Scandium–aluminium
§ 3.1.2 List of aerospace aluminium alloys
o 3.2 Marine alloys
o 3.3 Cycling alloys
o 3.4 Automotive alloys
o 3.5 Air and gas cylinders
· 4 See also
· 5 References
· 6 External links
Engineering use and aluminium alloys properties
Overview
Aluminium alloys with a wide range of properties are used in engineering structures. Alloy systems are classified by a number system (ANSI) or by names indicating their main alloying constituents (DIN and ISO). Selecting the right alloy for a given application entails considerations of its tensile strength, density, ductility, formability, workability, weldability, and corrosion resistance, to name a few. A brief historical overview of alloys and manufacturing technologies is given in Ref. Aluminium alloys are used extensively in aircraft due to their high strength-to-weight ratio. On the other hand, pure aluminium metal is much too soft for such uses, and it does not have the high tensile strength that is needed for airplanes and helicopters.
Aluminium alloys versus types of steel
Aluminium alloys typically have an elastic modulus of about 70 GPa, which is about one-third of the elastic modulus of most kinds of steel and steel alloys. Therefore, for a given load, a component or unit made of an aluminium alloy will experience a greater deformation in the elastic regime than a steel part of identical size and shape. Though there are aluminium alloys with somewhat-higher tensile strengths than the commonly used kinds of steel, simply replacing a steel part with an aluminium alloy might lead to problems.
With completely new metal products, the design choices are often governed by the choice of manufacturing technology. Extrusions are particularly important in this regard, owing to the ease with which aluminium alloys, particularly the Al–Mg–Si series, can be extruded to form complex profiles.
In general, stiffer and lighter designs can be achieved with aluminium alloys than is feasible with steels. For instance, consider the bending of a thin-walled tube: the second moment of area is inversely related to the stress in the tube wall, i.e. stresses are lower for larger values. The second moment of area is proportional to the cube of the radius times the wall thickness, thus increasing the radius (and weight) by 26% will lead to a halving of the wall stress. For this reason, bicycle frames made of aluminium alloys make use of larger tube diameters than steel or titanium in order to yield the desired stiffness and strength. In automotive engineering, cars made of aluminium alloys employ space frames made of extruded profiles to ensure rigidity. This represents a radical change from the common approach for current steel car design, which depend on the body shells for stiffness, known as unibody design.
Aluminium alloys are widely used in automotive engines, particularly in cylinder blocks andcrankcases due to the weight savings that are possible. Since aluminium alloys are susceptible to warping at elevated temperatures, the cooling system of such engines is critical. Manufacturing techniques and metallurgical advancements have also been instrumental for the successful application in automotive engines. In the 1960s, the aluminium cylinder heads of the Corvair earned a reputation for failure and stripping ofthreads, which is not seen in current aluminium cylinder heads.
An important structural limitation of aluminium alloys is their lower fatigue strength compared to steel. In controlled laboratory conditions, steels display a fatigue limit, which is the stress amplitude below which no failures occur – the metal does not continue to weaken with extended stress cycles. Aluminium alloys do not have this lower fatigue limit and will continue to weaken with continued stress cycles. Aluminium alloys are therefore sparsely used in parts that require high fatigue strength in the high cycle regime (more than 107 stress cycles).
Heat sensitivity considerations
Often, the metal's sensitivity to heat must also be considered. Even a relatively routine workshop procedure involving heating is complicated by the fact that aluminium, unlike steel, will melt without first glowing red. Forming operations where a blow torch is used can reverse or remove heat treating, therefore is not advised whatsoever. No visual signs reveal how the material is internally damaged. Much like welding heat treated, high strength link chain, all strength is now lost by heat of the torch. The chain is dangerous and must be discarded.
Aluminium also is subject to internal stresses and strains when it is overheated; the tendency of the metal to creep under these stresses tends to result in delayed distortions. For example, the warping or cracking of overheated aluminium automobile cylinder heads is commonly observed, sometimes years later, as is the tendency of improperly welded aluminium bicycle frames to gradually twist out of alignment from the stresses of the welding process. Thus, the aerospace industry avoids heat altogether by joining parts with rivets of like metal composition, other fasteners, or adhesives.
Stresses in overheated aluminium can be relieved by heat-treating the parts in an oven and gradually cooling it—in effect annealing the stresses. Yet these parts may still become distorted, so that heat-treating of welded bicycle frames, for instance, can result in a significant fraction becoming misaligned. If the misalignment is not too severe, the cooled parts may be bent into alignment. Of course, if the frame is properly designed for rigidity (see above), that bending will require enormous force.
Aluminium's intolerance to high temperatures has not precluded its use in rocketry; even for use in constructing combustion chambers where gases can reach 3500 K. The Agena upper stage engine used a regeneratively cooled aluminium design for some parts of the nozzle, including the thermally critical throat region; in fact the extremely high thermal conductivity of aluminium prevented the throat from reaching the melting point even under massive heat flux, resulting in a reliable, lightweight component.
Household wiring
Because of its high conductivity and relatively low price compared with copper in the 1960s, aluminium was introduced at that time for household electrical wiring in North America, even though many fixtures had not been designed to accept aluminium wire. But the new use brought some problems:
· The greater coefficient of thermal expansion of aluminium causes the wire to expand and contract relative to the dissimilar metal screw connection, eventually loosening the connection.
· Pure aluminium has a tendency to creep under steady sustained pressure (to a greater degree as the temperature rises), again loosening the connection.
· Galvanic corrosion from the dissimilar metals increases the electrical resistance of the connection.
All of this resulted in overheated and loose connections, and this in turn resulted in some fires. Builders then became wary of using the wire, and many jurisdictions outlawed its use in very small sizes, in new construction. Yet newer fixtures eventually were introduced with connections designed to avoid loosening and overheating. At first they were marked "Al/Cu", but they now bear a "CO/ALR" coding.
Another way to forestall the heating problem is to crimp the aluminium wire to a short "pigtail" of copper wire. A properly done high-pressure crimp by the proper tool is tight enough to reduce any thermal expansion of the aluminium. Today, new alloys, designs, and methods are used for aluminium wiring in combination with aluminium terminations.
Alloy designations
Wrought and cast aluminium alloys use different identification systems. Wrought aluminium is identified with a four digit number which identifies the alloying elements.
Cast aluminium alloys use a four to five digit number with a decimal point. The digit in the hundreds place indicates the alloying elements, while the digit after the decimal point indicates the form (cast shape or ingot).
Temper designation
The temper designation follows the cast or wrought designation number with a dash, a letter, and potentially a one to three digit number, e.g. 6061-T6. The definitions for the tempers are:
-F
As fabricated
-H
Strain hardened (cold worked) with or without thermal treatment
-H1
Strain hardened without thermal treatment
-H2
Strain hardened and partially annealed
-H3
Strain hardened and stabilized by low temperature heating
Second digit
A second digit denotes the degree of hardness
-HX2 = 1/4 hard
-HX4 = 1/2 hard
-HX6 = 3/4 hard
-HX8 = full hard
-HX9 = extra hard
-O
Full soft (annealed)
-T
Heat treated to produce stable tempers
-T1
Cooled from hot working and naturally aged (at room temperature)
-T2
Cooled from hot working, cold-worked, and naturally aged
-T3
Solution heat treated and cold worked
-T4
Solution heat treated and naturally aged
-T5
Cooled from hot working and artificially aged (at elevated temperature)
-T51
Stress relieved by stretching
-T510
No further straightening after stretching
-T511
Minor straightening after stretching
-T52
Stress relieved by thermal treatment
-T6
Solution heat treated and artificially aged
-T7
Solution heat treated and stabilized
-T8
Solution heat treated, cold worked, and artificially aged
-T9
Solution heat treated, artificially aged, and cold worked
-T10
Cooled from hot working, cold-worked, and artificially aged
-W
Solution heat treated only
Note: -W is a relatively soft intermediary designation that applies after heat treat and before aging is completed. The -W condition can be extended at extremely low temperatures but not indefinitely and depending on the material will typically last no longer than 15 minutes at ambient temperatures.
Wrought alloys
The International Alloy Designation System is the most widely accepted naming scheme forwrought alloys. Each alloy is given a four-digit number, where the first digit indicates the major alloying elements.
· 1000 series are essentially pure aluminium with a minimum 99% aluminium content by weight and can be work hardened.
· 2000 series are alloyed with copper, can be precipitation hardened to strengths comparable to steel. Formerly referred to as duralumin, they were once the most common aerospace alloys, but were susceptible to stress corrosion cracking and are increasingly replaced by 7000 series in new designs.
· 3000 series are alloyed with manganese, and can be work hardened.
· 4000 series are alloyed with silicon. They are also known as silumin.
· 5000 series are alloyed with magnesium.
· 6000 series are alloyed with magnesium and silicon. They are easy to machine, areweldable, and can be precipitation hardened, but not to the high strengths that 2000 and 7000 can reach. 6061 alloy is one of the most commonly used general-purpose aluminium alloy.
· 7000 series are alloyed with zinc, and can be precipitation hardened to the highest strengths of any aluminium alloy (tensile strength up to 700 MPa for the 7068 alloy).
· 8000 series are alloyed with other elements which are not covered by other series.Aluminium-lithium alloys are an example [7]
Wrought aluminium alloy composition limits (% weight) |
||||||||||||||||
Alloy |
Si |
Fe |
Cu |
Mn |
Mg |
Cr |
Zn |
V |
Ti |
Bi |
Ga |
Pb |
Zr |
Limits†† |
Al |
|
Each |
Total |
|||||||||||||||
1050[8] |
0.25 |
0.40 |
0.05 |
0.05 |
0.05 |
0.05 |
0.03 |
99.5 min |
||||||||
1060 |
0.25 |
0.35 |
0.05 |
0.03 |
0.03 |
0.03 |
0.05 |
0.05 |
0.03 |
0.03 |
0.03 |
0.03 |
0.03 |
0.03 |
99.6 min |
|
1100 |
0.95 Si+Fe |
0.05–0.20 |
0.05 |
0.10 |
0.05 |
0.15 |
99.0 min |
|||||||||
1199[8] |
0.006 |
0.006 |
0.006 |
0.002 |
0.006 |
0.006 |
0.005 |
0.002 |
0.005 |
0.002 |
99.99 min |
|||||
2014 |
0.50–1.2 |
0.7 |
3.9–5.0 |
0.40–1.2 |
0.20–0.8 |
0.10 |
0.25 |
0.15 |
0.05 |
0.15 |
remainder |
|||||
2024 |
0.50 |
0.50 |
3.8–4.9 |
0.30–0.9 |
1.2–1.8 |
0.10 |
0.25 |
0.15 |
0.05 |
0.15 |
remainder |
|||||
2219 |
0.2 |
0.30 |
5.8–6.8 |
0.20–0.40 |
0.02 |
0.10 |
0.05–0.15 |
0.02–0.10 |
0.10–0.25 |
0.05 |
0.15 |
remainder |
||||
3003 |
0.6 |
0.7 |
0.05–0.20 |
1.0–1.5 |
0.10 |
0.05 |
0.15 |
remainder |
||||||||
3004 |
0.30 |
0.7 |
0.25 |
1.0–1.5 |
0.8–1.3 |
0.25 |
0.05 |
0.15 |
remainder |
|||||||
3102 |
0.40 |
0.7 |
0.10 |
0.05–0.40 |
0.30 |
0.10 |
0.05 |
0.15 |
remainder |
|||||||
4041 |
4.5–6.0 |
0.80 |
0.30 |
0.05 |
0.05 |
0.10 |
0.20 |
0.05 |
0.15 |
remainder |
||||||
5005 |
0.3 |
0.7 |
0.2 |
0.2 |
0.5-1.1 |
0.1 |
0.25 |
0.05 |
0.15 |
remainder |
||||||
5052 |
0.25 |
0.40 |
0.10 |
0.10 |
2.2–2.8 |
0.15–0.35 |
0.10 |
0.05 |
0.15 |
remainder |
||||||
5083 |
0.40 |
0.40 |
0.10 |
0.40–1.0 |
4.0–4.9 |
0.05–0.25 |
0.25 |
0.15 |
0.05 |
0.15 |
remainder |
|||||
5086 |
0.40 |
0.50 |
0.10 |
0.20–0.7 |
3.5–4.5 |
0.05–0.25 |
0.25 |
0.15 |
0.05 |
0.15 |
remainder |
|||||
5154 |
0.25 |
0.40 |
0.10 |
0.10 |
3.10–3.90 |
0.15–0.35 |
0.20 |
0.20 |
0.05 |
0.15 |
remainder |
|||||
5356 |
0.25 |
0.40 |
0.10 |
0.10 |
4.50–5.50 |
0.05–0.20 |
0.10 |
0.06–0.20 |
0.05 |
0.15 |
remainder |
|||||
5454 |
0.25 |
0.40 |
0.10 |
0.50–1.0 |
2.4–3.0 |
0.05–0.20 |
0.25 |
0.20 |
0.05 |
0.15 |
remainder |
|||||
5456 |
0.25 |
0.40 |
0.10 |
0.50–1.0 |
4.7–5.5 |
0.05–0.20 |
0.25 |
0.20 |
0.05 |
0.15 |
remainder |
|||||
5754 |
0.40 |
0.40 |
0.10 |
0.50 |
2.6–3.6 |
0.30 |
0.20 |
0.15 |
0.05 |
0.15 |
remainder |
|||||
6005 |
0.6–0.9 |
0.35 |
0.10 |
0.10 |
0.40–0.6 |
0.10 |
0.10 |
0.10 |
0.05 |
0.15 |
remainder |
|||||
6005A† |
0.50–0.9 |
0.35 |
0.30 |
0.50 |
0.40–0.7 |
0.30 |
0.20 |
0.10 |
0.05 |
0.15 |
remainder |
|||||
6060 |
0.30–0.6 |
0.10–0.30 |
0.10 |
0.10 |
0.35–0.6 |
0.05 |
0.15 |
0.10 |
0.05 |
0.15 |
remainder |
|||||
6061 |
0.40–0.8 |
0.7 |
0.15–0.40 |
0.15 |
0.8–1.2 |
0.04–0.35 |
0.25 |
0.15 |
0.05 |
0.15 |
remainder |
|||||
6063 |
0.20–0.6 |
0.35 |
0.10 |
0.10 |
0.45–0.9 |
0.10 |
0.10 |
0.10 |
0.05 |
0.15 |
remainder |
|||||
6066 |
0.9–1.8 |
0.50 |
0.7–1.2 |
0.6–1.1 |
0.8–1.4 |
0.40 |
0.25 |
0.20 |
0.05 |
0.15 |
remainder |
|||||
6070 |
1.0–1.7 |
0.50 |
0.15–0.40 |
0.40–1.0 |
0.50–1.2 |
0.10 |
0.25 |
0.15 |
0.05 |
0.15 |
remainder |
|||||
6082 |
0.7–1.3 |
0.50 |
0.10 |
0.40–1.0 |
0.60–1.2 |
0.25 |
0.20 |
0.10 |
0.05 |
0.15 |
remainder |
|||||
6105 |
0.6–1.0 |
0.35 |
0.10 |
0.10 |
0.45–0.8 |
0.10 |
0.10 |
0.10 |
0.05 |
0.15 |
remainder |
|||||
6162 |
0.40–0.8 |
0.50 |
0.20 |
0.10 |
0.7–1.1 |
0.10 |
0.25 |
0.10 |
0.05 |
0.15 |
remainder |
|||||
6262 |
0.40–0.8 |
0.7 |
0.15–0.40 |
0.15 |
0.8–1.2 |
0.04–0.14 |
0.25 |
0.15 |
0.40–0.7 |
0.40–0.7 |
0.05 |
0.15 |
remainder |
|||
6351 |
0.7–1.3 |
0.50 |
0.10 |
0.40–0.8 |
0.40–0.8 |
0.20 |
0.20 |
0.05 |
0.15 |
remainder |
||||||
6463 |
0.20–0.6 |
0.15 |
0.20 |
0.05 |
0.45–0.9 |
0.05 |
0.05 |
0.15 |
remainder |
|||||||
7005 |
0.35 |
0.40 |
0.10 |
0.20–0.70 |
1.0–1.8 |
0.06–0.20 |
4.0–5.0 |
0.01–0.06 |
0.08–0.20 |
0.05 |
0.15 |
remainder |
||||
7022 |
0.50 |
0.50 |
0.50–1.00 |
0.10–0.40 |
2.60–3.70 |
0.10–0.30 |
4.30–5.20 |
0.20 |
0.05 |
0.15 |
remainder |
|||||
7068 |
0.12 |
0.15 |
1.60–2.40 |
0.10 |
2.20–3.00 |
0.05 |
7.30–8.30 |
0.01 |
0.05–0.15 |
0.05 |
0.15 |
remainder |
||||
7072 |
0.7 Si+Fe |
0.10 |
0.10 |
0.10 |
0.8–1.3 |
0.05 |
0.15 |
remainder |
||||||||
7075 |
0.40 |
0.50 |
1.2–2.0 |
0.30 |
2.1–2.9 |
0.18–0.28 |
5.1–6.1 |
0.20 |
0.05 |
0.15 |
remainder |
|||||
7079 |
0.3 |
0.40 |
0.40–0.80 |
0.10–0.30 |
2.9–3.7 |
0.10–0.25 |
3.8–4.8 |
0.10 |
0.05 |
0.15 |
remainder |
|||||
7116 |
0.15 |
0.30 |
0.50–1.1 |
0.05 |
0.8–1.4 |
4.2–5.2 |
0.05 |
0.05 |
0.03 |
0.05 |
0.15 |
remainder |
||||
7129 |
0.15 |
0.30 |
0.50–0.9 |
0.10 |
1.3–2.0 |
0.10 |
4.2–5.2 |
0.05 |
0.05 |
0.03 |
0.05 |
0.15 |
remainder |
|||
7178 |
0.40 |
0.50 |
1.6–2.4 |
0.30 |
2.4–3.1 |
0.18–0.28 |
6.3–7.3 |
0.20 |
0.05 |
0.15 |
remainder |
|||||
Alloy |
Si |
Fe |
Cu |
Mn |
Mg |
Cr |
Zn |
V |
Ti |
Bi |
Ga |
Pb |
Zr |
Limits†† |
Al |
|
Each |
Total |
|||||||||||||||
†Manganese plus chromium must be between 0.12–0.50%. |
Cast alloys
The Aluminum Association (AA) has adopted a nomenclature similar to that of wrought alloys. British Standard and DIN have different designations. In the AA system, the second two digits reveal the minimum percentage of aluminium, e.g. 150.x correspond to a minimum of 99.50% aluminium. The digit after the decimal point takes a value of 0 or 1, denoting casting and ingot respectively.[1] The main alloying elements in the AA system are as follows:
· 1xx.x series are minimum 99% aluminium
· 2xx.x series copper
· 3xx.x series silicon, copper and/or magnesium
· 4xx.x series silicon
· 5xx.x series magnesium
· 7xx.x series zinc
· 8xx.x series tin
· 9xx.x other elements
Minimum tensile requirements for cast aluminium alloys |
|||||
Alloy type |
Temper |
Tensile strength (min) in ksi (MPa) |
Yield strength (min) in ksi (MPa) |
Elongation in 2 in % |
|
ANSI |
UNS |
||||
201.0 |
A02010 |
T7 |
60.0 (414) |
50.0 (345) |
3.0 |
204.0 |
A02040 |
T4 |
45.0 (310) |
28.0 (193) |
6.0 |
242.0 |
A02420 |
O |
23.0 (159) |
N/A |
N/A |
T61 |
32.0 (221) |
20.0 (138) |
N/A |
||
A242.0 |
A12420 |
T75 |
29.0 (200) |
N/A |
1.0 |
295.0 |
A02950 |
T4 |
29.0 (200) |
13.0 (90) |
6.0 |
T6 |
32.0 (221) |
20.0 (138) |
3.0 |
||
T62 |
36.0 (248) |
28.0 (193) |
N/A |
||
T7 |
29.0 (200) |
16.0 (110) |
3.0 |
||
319.0 |
A03190 |
F |
23.0 (159) |
13.0 (90) |
1.5 |
T5 |
25.0 (172) |
N/A |
N/A |
||
T6 |
31.0 (214) |
20.0 (138) |
1.5 |
||
328.0 |
A03280 |
F |
25.0 (172) |
14.0 (97) |
1.0 |
T6 |
34.0 (234) |
21.0 (145) |
1.0 |
||
355.0 |
A03550 |
T6 |
32.0 (221) |
20.0 (138) |
2.0 |
T51 |
25.0 (172) |
18.0 (124) |
N/A |
||
T71 |
30.0 (207) |
22.0 (152) |
N/A |
||
C355.0 |
A33550 |
T6 |
36.0 (248) |
25.0 (172) |
2.5 |
356.0 |
A03560 |
F |
19.0 (131) |
9.5 (66) |
2.0 |
T6 |
30.0 (207) |
20.0 (138) |
3.0 |
||
T7 |
31.0 (214) |
N/A |
N/A |
||
T51 |
23.0 (159) |
16.0 (110) |
N/A |
||
T71 |
25.0 (172) |
18.0 (124) |
3.0 |
||
A356.0 |
A13560 |
T6 |
34.0 (234) |
24.0 (165) |
3.5 |
T61 |
35.0 (241) |
26.0 (179) |
1.0 |
||
443.0 |
A04430 |
F |
17.0 (117) |
7.0 (48) |
3.0 |
B443.0 |
A24430 |
F |
17.0 (117) |
6.0 (41) |
3.0 |
512.0 |
A05120 |
F |
17.0 (117) |
10.0 (69) |
N/A |
514.0 |
A05140 |
F |
22.0 (152) |
9.0 (62) |
6.0 |
520.0 |
A05200 |
T4 |
42.0 (290) |
22.0 (152) |
12.0 |
535.0 |
A05350 |
F |
35.0 (241) |
18.0 (124) |
9.0 |
705.0 |
A07050 |
T5 |
30.0 (207) |
17.0 (117)† |
5.0 |
707.0 |
A07070 |
T7 |
37.0 (255) |
30.0 (207)† |
1.0 |
710.0 |
A07100 |
T5 |
32.0 (221) |
20.0 (138) |
2.0 |
712.0 |
A07120 |
T5 |
34.0 (234) |
25.0 (172)† |
4.0 |
713.0 |
A07130 |
T5 |
32.0 (221) |
22.0 (152) |
3.0 |
771.0 |
A07710 |
T5 |
42.0 (290) |
38.0 (262) |
1.5 |
T51 |
32.0 (221) |
27.0 (186) |
3.0 |
||
T52 |
36.0 (248) |
30.0 (207) |
1.5 |
||
T6 |
42.0 (290) |
35.0 (241) |
5.0 |
||
T71 |
48.0 (331) |
45.0 (310) |
5.0 |
||
850.0 |
A08500 |
T5 |
16.0 (110) |
N/A |
5.0 |
851.0 |
A08510 |
T5 |
17.0 (117) |
N/A |
3.0 |
852.0 |
A08520 |
T5 |
24.0 (165) |
18.0 (124) |
N/A |
†Only when requested by the customer |
Named alloys
· Alferium an aluminium-iron alloy developed by Schneider, used for aircraft manufacture by Société pour la Construction d'Avions Métallique "Aviméta"
· Alclad aluminium sheet formed from high-purity aluminium surface layers bonded to high strength aluminium alloy core material[10]
· Birmabright (aluminium, magnesium) a product of The Birmetals Company, basically equivalent to 5251
· Duralumin (copper, aluminium)
· Hindalium (aluminium, magnesium, manganese, silicon) product of Hindustan Aluminium Corporation Ltd, made in 16ga rolled sheets for cookware
· Pandalloy Pratt&Whitney proprietary alloy, supposedly having high strength and superior high temperature performance.
· Magnalium
· Magnox (magnesium, aluminium)
· Silumin (aluminium, silicon)
· Titanal (aluminium, zinc, magnesium, copper, zirconium) a product of Austria Metall AG. Commonly used in high performance sports products, particularly snowboards and skis.
· Y alloy, Hiduminium, R.R. alloys: pre-war nickel-aluminium alloys, used in aerospace and engine pistons, for their ability to retain strength at elevated temperature.
Applications
Aerospace alloys
Scandium–aluminium
The addition of scandium to aluminium creates nanoscale Al3Sc precipitates which limit the excessive grain growth that occurs in the heat-affected zone of welded aluminium components. This has two beneficial effects: the precipitated Al3Sc forms smaller crystals than are formed in other aluminium alloys and the width of precipitate-free zones that normally exist at the grain boundaries of age-hardenable aluminium alloys is reduced.Scandium is also a potent grain refiner in cast aluminium alloys, and atom for atom, the most potent strengthener in aluminium, both as a result of grain refinement and precipitation strengthening. However, titanium alloys, which are stronger but heavier, are cheaper and much more widely used.
The main application of metallic scandium by weight is in aluminium-scandium alloys for minor aerospace industry components. These alloys contain between 0.1% and 0.5% (by weight) of scandium. They were used in the Russian military aircraft Mig 21 and Mig 29.
Some items of sports equipment, which rely on high performance materials, have been made with scandium-aluminium alloys, including baseball bats, lacrosse sticks, as well as bicycle frames and components, and tent poles. U.S. gunmaker Smith & Wessonproduces revolvers with frames composed of scandium alloy and cylinders of titanium.
List of aerospace aluminium alloys
The following aluminium alloys are commonly used in aircraft and other aerospacestructures:
· 7068 aluminium
· 7075 aluminium
· 6061 aluminium
· 6063 aluminium
· 2024 aluminium
· 5052 aluminium
· 7050 aluminium
Note that the term aircraft aluminium or aerospace aluminium usually refers to 7075.
6063 aluminium alloys are heat treatable with moderately high strength, excellent corrosion resistance and good extrudability. They are regularly used as architectural and structural members.
The following list of aluminium alloys are currently produced, but less widely used:
· 2090 aluminium
· 2124 aluminium
· 2195 aluminium – Al-Li alloy, used in Space Shuttle Super Lightweight external tank,[20]and the SpaceX Falcon 9[21] and Falcon 1e second stage launch vehicles.[22]
· 2219 aluminium – Al-Cu alloy, used in the original Space Shuttle Standard Weight external tank
· 2324 aluminium
· 5059 aluminium – Used in experimental rocket cryogenic tanks
· 6013 aluminium
· 7050 aluminium
· 7055 aluminium
· 7150 aluminium
· 7475 aluminium
Marine alloys
These alloys are used for boat building and shipbuilding, and other marine and salt-water sensitive shore applications.
· 5052 aluminium alloy
· 5059 aluminium alloy
· 5083 aluminium alloy
· 5086 aluminium alloy
· 6061 aluminium alloy
· 6063 aluminium alloy
4043, 5183, 6005A, 6082 also used in marine constructions and off shore applications.
Cycling alloys
These alloys are used for cycling frames and components
· 2014 aluminium
· 6061 aluminium
· 6063 aluminium
· 7005 aluminium
· 7075 aluminium
· Scandium aluminium
Automotive alloys
6111 aluminium and 2008 aluminium alloy are extensively used for external automotive body panels, with 5083 and 5754 used for inner body panels. Hoods have been manufactured from 2036, 6016, and 6111 alloys. Truck and trailer body panels have used 5456 aluminum.
Automobile frames often use 5182 aluminium or 5754 aluminium formed sheets, 6061 or6063 extrusions.
Wheels have been cast from A356.0 aluminium or formed 5xxx sheet.
Air and gas cylinders
6061 aluminum and 6351 aluminium [25] are widely used in breathing gas cylinders for scuba diving and SCBA.
Provide all grade of these alloy by different shape & size is Our expertise
For any inquiry & request, don't hesitate to contact us
Disclaimer
Every effort is made to ensure that technical specifications are accurate. However, technical specifications included herein should be used as a guideline only. All specifications are subject to change without notice.